Introduction to High–Level Synthesis

Chapter 1

Source: Gajski, Dutt, Wu, Lin
"High–Level Synthesis"
NEED FOR HIGH-LEVELS OF ABSTRACTION

- VLSI complexity requires hierarchy
- VLSI technology reached maturity
- First silicon and first specification
- Shorter design cycle
- Better exploration of design space
- Algorithms outperform designers

Two schools of thought:

1. capture-and-simulate
2. describe-and-synthesize
LEVELS OF ABSTRACTION

- **PHYSICAL DOMAIN**
 - Transistor layouts
 - Cells
 - Chips
 - Boards, MCMs

- **STRUCTURAL DOMAIN**
 - Processors, Memories, Buses
 - Registers, ALUs, MUXs
 - Gates, flip-flops
 - Transistors

- **BEHAVIORAL DOMAIN**
 - System synthesis
 - Register–transfer synthesis
 - Logic synthesis
 - Circuit synthesis
 - Transistor functions

- **PROCESSOR SYNTHESIS**
 - Flowcharts, algorithms
 - Register transfers
 - Boolean expressions
if IR(3) = '0' then
 PC := PC + 1;
else
 DBUF := MEM(PC);
 MEM(SP) := PC + 1;
 SP := SP - 1;
 PC := DBUF;
end if;

BEHAVIOR

STRUCTURE

FLOORPLAN
DEFINITION OF SYNTHESIS

Behavior–to–structure

- Circuit synthesis
- Logic synthesis
- Register–transfer synthesis
- System synthesis

Structure–to–layout

- Cell layout generation
- Module layout generation
- Chip floorplanning
- System partitioning and placement
Several descriptions for the same behavior
Several styles for the same description
Different abstractions for the same design
if CNT ≠ LIM then
 EN <= ENIT;
else
 EN <= '0';
end if;

Level sensitive

if ENIT = '1' and not ENIT'stable then
 EN <= '1';
elseif CNT = LIM then
 EN <= '0';
end if;

Edge sensitive
DIFFERENT STYLES FOR THE SAME DESCRIPTIONS

Transmission gates

AND–OR–INVERT gate
DIFFERENT CONSTRUCTS FOR THE SAME BEHAVIOR

1 state \(\text{(no status register)} \)
if \(x = 0 \) then \(y = a+b \) else \(y = a-b \)

2 states \(\text{(with status register)} \)
if \(x = 0 \) then status = 1
if status = 1 then \(y = a+b \) else \(y = a-b \)